How to Make More Deepseek By Doing Less > 자유게시판

본문 바로가기
  • 본 온라인 쇼핑몰은 유니온다오 회원과 유니온다오 협동조합 출자 조합원 만의 전용 쇼핑몰입니다.
  • 회원로그인

    아이디 비밀번호
  • 장바구니0
쇼핑몰 전체검색

How to Make More Deepseek By Doing Less

페이지 정보

profile_image
작성자 Rick Foll
댓글 0건 조회 12회 작성일 25-02-01 09:31

본문

deepseek ai 모델 패밀리의 면면을 한 번 살펴볼까요? 이제 이 최신 모델들의 기반이 된 혁신적인 아키텍처를 한 번 살펴볼까요? 이 Lean 4 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다. 236B 모델은 210억 개의 활성 파라미터를 포함하는 DeepSeek의 MoE 기법을 활용해서, 큰 사이즈에도 불구하고 모델이 빠르고 효율적입니다. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다. 기존의 MoE 아키텍처는 게이팅 메커니즘 (Sparse Gating)을 사용해서 각각의 입력에 가장 관련성이 높은 전문가 모델을 선택하는 방식으로 여러 전문가 모델 간에 작업을 분할합니다. 거의 한 달에 한 번 꼴로 새로운 모델 아니면 메이저 업그레이드를 출시한 셈이니, 정말 놀라운 속도라고 할 수 있습니다. 자세한 분석 내용은 Artificial Analysis를 한 번 참조해 보시기 바랍니다. 이렇게 한 번 고르게 높은 성능을 보이는 모델로 기반을 만들어놓은 후, 아주 빠르게 새로운 모델, 개선된 버전을 내놓기 시작했습니다. 이렇게 하면 불필요한 계산에 자원을 낭비하지 않으니 효율이 높아지죠. 이렇게 하면, 모델이 데이터의 다양한 측면을 좀 더 효과적으로 처리할 수 있어서, 대규모 작업의 효율성, 확장성이 개선되죠. 자, 이렇게 창업한지 겨우 반년 남짓한 기간동안 스타트업 DeepSeek가 숨가쁘게 달려온 모델 개발, 출시, 개선의 역사(?)를 흝어봤는데요. 자, 그리고 2024년 8월, 바로 며칠 전 가장 따끈따끈한 신상 모델이 출시되었는데요.


deepseek-frente-openai_69.jpg?crop=1920,1080,x0,y0&width=1280&height=720&optimize=low&format=webply 바로 직후인 2023년 11월 29일, DeepSeek LLM 모델을 발표했는데, 이 모델을 ‘차세대의 오픈소스 LLM’이라고 불렀습니다. ‘DeepSeek’은 오늘 이야기할 생성형 AI 모델 패밀리의 이름이자 이 모델을 만들고 있는 스타트업의 이름이기도 합니다. 현재 출시한 모델들 중 가장 인기있다고 할 수 있는 DeepSeek-Coder-V2는 코딩 작업에서 최고 수준의 성능과 비용 경쟁력을 보여주고 있고, Ollama와 함께 실행할 수 있어서 인디 개발자나 엔지니어들에게 아주 매력적인 옵션입니다. 특히 DeepSeek-Coder-V2 모델은 코딩 분야에서 최고의 성능과 비용 경쟁력으로 개발자들의 주목을 받고 있습니다. 역시 중국의 스타트업인 이 DeepSeek의 기술 혁신은 실리콘 밸리에서도 주목을 받고 있습니다. 이 회사의 소개를 보면, ‘Making AGI a Reality’, ‘Unravel the Mystery of AGI with Curiosity’, ‘Answer the Essential Question with Long-termism’과 같은 표현들이 있는데요. 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. 과연 DeepSeekMoE는 거대언어모델의 어떤 문제, 어떤 한계를 해결하도록 설계된 걸까요? DeepSeekMoE는 각 전문가를 더 작고, 더 집중된 기능을 하는 부분들로 세분화합니다. Capabilities: DALL·E three is a revolutionary image generation mannequin. Capabilities: Gemini is a robust generative mannequin specializing in multi-modal content material creation, together with text, code, and pictures. It excels in creating detailed, coherent photos from textual content descriptions. It also gives a reproducible recipe for creating training pipelines that bootstrap themselves by starting with a small seed of samples and producing greater-quality coaching examples as the fashions become more capable.


Multilingual coaching on 14.8 trillion tokens, heavily focused on math and programming. DeepSeek’s system: The system is known as Fire-Flyer 2 and is a hardware and software program system for doing giant-scale AI training. He monitored it, in fact, utilizing a business AI to scan its traffic, offering a continual abstract of what it was doing and guaranteeing it didn’t break any norms or laws. Note that utilizing Git with HF repos is strongly discouraged. Up till this point, High-Flyer produced returns that have been 20%-50% more than inventory-market benchmarks previously few years. It’s backed by High-Flyer Capital Management, a Chinese quantitative hedge fund that uses AI to tell its buying and selling choices. It’s on a case-to-case basis relying on the place your affect was at the previous firm. "Innovation usually arises naturally - it’s not something that may be intentionally deliberate or taught," he mentioned. If speaking about weights, weights you may publish straight away. We focus the majority of our NPU optimization efforts on the compute-heavy transformer block containing the context processing and token iteration, whereby we make use of int4 per-channel quantization, and selective combined precision for the weights alongside int16 activations.


ai_pod_quer_oscar.jpg The analysis results underscore the model’s dominance, marking a significant stride in natural language processing. The model’s open-source nature additionally opens doorways for additional research and growth. Sources: AI analysis publications and evaluations from the NLP neighborhood. Unlike most groups that relied on a single model for the competitors, we utilized a dual-mannequin approach. This strategy allows for more specialised, correct, and context-aware responses, and sets a brand new customary in dealing with multi-faceted AI challenges. In standard MoE, some experts can develop into overly relied on, while different specialists could be rarely used, wasting parameters. 2024-04-15 Introduction The objective of this post is to deep-dive into LLMs which are specialised in code generation duties and see if we will use them to jot down code. Innovations: Mixtral distinguishes itself by its dynamic allocation of tasks to the best suited specialists inside its community. DeepSeek-Coder-V2 is an open-source Mixture-of-Experts (MoE) code language mannequin that achieves efficiency comparable to GPT4-Turbo in code-particular duties. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? Some specialists imagine this assortment - which some estimates put at 50,000 - led him to construct such a strong AI model, by pairing these chips with cheaper, less refined ones.

댓글목록

등록된 댓글이 없습니다.

회사명 유니온다오협동조합 주소 서울특별시 강남구 선릉로91길 18, 동현빌딩 10층 (역삼동)
사업자 등록번호 708-81-03003 대표 김장수 전화 010-2844-7572 팩스 0504-323-9511
통신판매업신고번호 2023-서울강남-04020호 개인정보 보호책임자 김장수

Copyright © 2001-2019 유니온다오협동조합. All Rights Reserved.