Want a Thriving Business? Deal with Deepseek! > 자유게시판

본문 바로가기
  • 본 온라인 쇼핑몰은 유니온다오 회원과 유니온다오 협동조합 출자 조합원 만의 전용 쇼핑몰입니다.
  • 회원로그인

    아이디 비밀번호
  • 장바구니0
쇼핑몰 전체검색

Want a Thriving Business? Deal with Deepseek!

페이지 정보

profile_image
작성자 Marla
댓글 0건 조회 8회 작성일 25-02-01 09:32

본문

s46kgh5_deepseek_625x300_27_January_25.jpg Llama 3.1 405B educated 30,840,000 GPU hours-11x that utilized by DeepSeek v3, for a model that benchmarks slightly worse. Finally, we are exploring a dynamic redundancy strategy for consultants, where every GPU hosts more consultants (e.g., Sixteen consultants), however only 9 will be activated throughout each inference step. This guide assumes you might have a supported NVIDIA GPU and have put in Ubuntu 22.04 on the machine that will host the ollama docker picture. Once it is finished it would say "Done". I'll cowl these in future posts. To obtain new posts and support our work, consider turning into a free or paid subscriber. Respond with "Agree" or "Disagree," noting whether details support this assertion. 이런 방식으로 코딩 작업에 있어서 개발자가 선호하는 방식에 더 정교하게 맞추어 작업할 수 있습니다. 기존의 MoE 아키텍처는 게이팅 메커니즘 (Sparse Gating)을 사용해서 각각의 입력에 가장 관련성이 높은 전문가 모델을 선택하는 방식으로 여러 전문가 모델 간에 작업을 분할합니다. DeepSeekMoE 아키텍처는 DeepSeek의 가장 강력한 모델이라고 할 수 있는 DeepSeek V2와 DeepSeek-Coder-V2을 구현하는데 기초가 되는 아키텍처입니다. 공유 전문가가 있다면, 모델이 구조 상의 중복성을 줄일 수 있고 동일한 정보를 여러 곳에 저장할 필요가 없어지게 되죠. ‘공유 전문가’는 위에 설명한 라우터의 결정에 상관없이 ‘항상 활성화’되는 특정한 전문가를 말하는데요, 여러 가지의 작업에 필요할 수 있는 ‘공통 지식’을 처리합니다.


search-engine-optimization-seo-digital-marketing-laptop.jpg 그 결과, DeepSeek는 정해진 토큰 예산 안에서 고해상도 이미지 (1024X1024)를 효율적으로 처리하면서도 계산의 오버헤드를 낮게 유지할 수 있다는 걸 보여줬습니다 - 바로 DeepSeek가 해결하고자 했던, 계산 효율성 (Computational Efficiency) 문제를 성공적으로 극복했다는 의미죠. 그리고 2024년 3월 말, free deepseek DeepSeek는 비전 모델에 도전해서 고품질의 비전-언어 이해를 하는 모델 DeepSeek-VL을 출시했습니다. 대부분의 오픈소스 비전-언어 모델이 ‘Instruction Tuning’에 집중하는 것과 달리, 시각-언어데이터를 활용해서 Pretraining (사전 훈련)에 더 많은 자원을 투입하고, 고해상도/저해상도 이미지를 처리하는 두 개의 비전 인코더를 사용하는 하이브리드 비전 인코더 (Hybrid Vision Encoder) 구조를 도입해서 성능과 효율성의 차별화를 꾀했습니다. DeepSeek-Coder-V2는 이전 버전 모델에 비교해서 6조 개의 토큰을 추가해서 트레이닝 데이터를 대폭 확충, 총 10조 2천억 개의 토큰으로 학습했습니다. 이전 버전인 DeepSeek-Coder의 메이저 업그레이드 버전이라고 할 수 있는 DeepSeek-Coder-V2는 이전 버전 대비 더 광범위한 트레이닝 데이터를 사용해서 훈련했고, ‘Fill-In-The-Middle’이라든가 ‘강화학습’ 같은 기법을 결합해서 사이즈는 크지만 높은 효율을 보여주고, 컨텍스트도 더 잘 다루는 모델입니다. 이 DeepSeek-Coder-V2 모델에는 어떤 비밀이 숨어있길래 GPT4-Turbo 뿐 아니라 Claude-3-Opus, Gemini-1.5-Pro, Llama-3-70B 등 널리 알려진 모델들까지도 앞서는 성능과 효율성을 달성할 수 있었을까요? DeepSeek-V2에서 도입한 MLA라는 구조는 이 어텐션 메커니즘을 변형해서 KV 캐시를 아주 작게 압축할 수 있게 한 거고, 그 결과 모델이 정확성을 유지하면서도 정보를 훨씬 빠르게, 더 적은 메모리를 가지고 처리할 수 있게 되는 거죠. 이 Lean four 환경에서 각종 정리의 증명을 하는데 사용할 수 있는 최신 오픈소스 모델이 DeepSeek-Prover-V1.5입니다.


조금만 더 이야기해 보면, 어텐션의 기본 아이디어가 ‘디코더가 출력 단어를 예측하는 각 시점마다 인코더에서의 전체 입력을 다시 한 번 참고하는 건데, 이 때 모든 입력 단어를 동일한 비중으로 고려하지 않고 해당 시점에서 예측해야 할 단어와 관련있는 입력 단어 부분에 더 집중하겠다’는 겁니다. 소스 코드 60%, 수학 코퍼스 (말뭉치) 10%, 자연어 30%의 비중으로 학습했는데, 약 1조 2천억 개의 코드 토큰은 깃허브와 CommonCrawl로부터 수집했다고 합니다. 마이크로소프트 리서치에서 개발한 것인데, 주로 수학 이론을 형식화하는데 많이 쓰인다고 합니다. 위에서 ‘DeepSeek-Coder-V2가 코딩과 수학 분야에서 GPT4-Turbo를 능가한 최초의 오픈소스 모델’이라고 말씀드렸는데요. DeepSeek 연구진이 고안한 이런 독자적이고 혁신적인 접근법들을 결합해서, DeepSeek-V2가 다른 오픈소스 모델들을 앞서는 높은 성능과 효율성을 달성할 수 있게 되었습니다. DeepSeek-V2는 위에서 설명한 혁신적인 MoE 기법과 더불어 DeepSeek 연구진이 고안한 MLA (Multi-Head Latent Attention)라는 구조를 결합한 트랜스포머 아키텍처를 사용하는 최첨단 언어 모델입니다. 1: MoE (Mixture of Experts) 아키텍처란 무엇인가? 먼저 기본적인 MoE (Mixture of Experts) 아키텍처를 생각해 보죠. 이런 두 가지의 기법을 기반으로, DeepSeekMoE는 모델의 효율성을 한층 개선, 특히 대규모의 데이터셋을 처리할 때 다른 MoE 모델보다도 더 좋은 성능을 달성할 수 있습니다.


거의 한 달에 한 번 꼴로 새로운 모델 아니면 메이저 업그레이드를 출시한 셈이니, 정말 놀라운 속도라고 할 수 있습니다. 이제 이 최신 모델들의 기반이 된 혁신적인 아키텍처를 한 번 살펴볼까요? 자, 이제 이 글에서 다룰 마지막 모델, DeepSeek-Coder-V2를 살펴볼까요? 예를 들어 중간에 누락된 코드가 있는 경우, 이 모델은 주변의 코드를 기반으로 어떤 내용이 빈 곳에 들어가야 하는지 예측할 수 있습니다. 이 소형 모델은 GPT-4의 수학적 추론 능력에 근접하는 성능을 보여줬을 뿐 아니라 또 다른, 우리에게도 널리 알려진 중국의 모델, Qwen-72B보다도 뛰어난 성능을 보여주었습니다. 특히 DeepSeek-V2는 더 적은 메모리를 사용하면서도 더 빠르게 정보를 처리하는 또 하나의 혁신적 기법, MLA (Multi-Head Latent Attention)을 도입했습니다. DeepSeek-Coder-V2는 컨텍스트 길이를 16,000개에서 128,000개로 확장, 훨씬 더 크고 복잡한 프로젝트도 작업할 수 있습니다 - 즉, 더 광범위한 코드 베이스를 더 잘 이해하고 관리할 수 있습니다. 따라서 각각의 전문가가 자기만의 고유하고 전문화된 영역에 집중할 수 있습니다. 모든 태스크를 대상으로 전체 2,360억개의 파라미터를 다 사용하는 대신에, DeepSeek-V2는 작업에 따라서 일부 (210억 개)의 파라미터만 활성화해서 사용합니다.

댓글목록

등록된 댓글이 없습니다.

회사명 유니온다오협동조합 주소 서울특별시 강남구 선릉로91길 18, 동현빌딩 10층 (역삼동)
사업자 등록번호 708-81-03003 대표 김장수 전화 010-2844-7572 팩스 0504-323-9511
통신판매업신고번호 2023-서울강남-04020호 개인정보 보호책임자 김장수

Copyright © 2001-2019 유니온다오협동조합. All Rights Reserved.